Fuzzy expert system for diagnosing diabetic neuropathy
نویسندگان
چکیده
AIM To design a fuzzy expert system to help detect and diagnose the severity of diabetic neuropathy. METHODS The research was completed in 2014 and consisted of two main phases. In the first phase, the diagnostic parameters were determined based on the literature review and by investigating specialists' perspectives (n = 8). In the second phase, 244 medical records related to the patients who were visited in an endocrinology and metabolism research centre during the first six months of 2014 and were primarily diagnosed with diabetic neuropathy, were used to test the sensitivity, specificity, and accuracy of the fuzzy expert system. RESULTS The final diagnostic parameters included the duration of diabetes, the score of a symptom examination based on the Michigan questionnaire, the score of a sign examination based on the Michigan questionnaire, the glycolysis haemoglobin level, fasting blood sugar, blood creatinine, and albuminuria. The output variable was the severity of diabetic neuropathy which was shown as a number between zero and 10, had been divided into four categories: absence of the disease, (the degree of severity) mild, moderate, and severe. The interface of the system was designed by ASP.Net (Active Server Pages Network Enabled Technology) and the system function was tested in terms of sensitivity (true positive rate) (89%), specificity (true negative rate) (98%), and accuracy (a proportion of true results, both positive and negative) (93%). CONCLUSION The system designed in this study can help specialists and general practitioners to diagnose the disease more quickly to improve the quality of care for patients.
منابع مشابه
Classification of the severity of diabetic neuropathy: a new approach taking uncertainties into account using fuzzy logic
OBJECTIVE This study proposes a new approach that considers uncertainty in predicting and quantifying the presence and severity of diabetic peripheral neuropathy. METHODS A rule-based fuzzy expert system was designed by four experts in diabetic neuropathy. The model variables were used to classify neuropathy in diabetic patients, defining it as mild, moderate, or severe. System performance wa...
متن کاملA Fuzzy Expert System for Diagnosis of Acute Lymphocytic Leukemia in Children
Fuzzy expert systems are one of the most practical intelligent models with the high potential for managing uncertainty associated to the medical diagnosis. In this paper, a fuzzy inference system (FIS) for diagnosing of acute lymphocytic leukemia in children has been introduced. The fuzzy expert system applies Mamdani reasoning model that has high interpretability to explain system results to e...
متن کاملA Fuzzy Expert System for Diagnosis of Acute Lymphocytic Leukemia in Children
Fuzzy expert systems are one of the most practical intelligent models with the high potential for managing uncertainty associated to the medical diagnosis. In this paper, a fuzzy inference system (FIS) for diagnosing of acute lymphocytic leukemia in children has been introduced. The fuzzy expert system applies Mamdani reasoning model that has high interpretability to explain system results to e...
متن کاملMultichannel Emg-based Estimation of Fiber Conduction Velocity during Isometric Contraction in Diabetic Patients with Different Severity Degrees of Neuropathy Classified by a Fuzzy Expert System
This study compares muscle fiber conduction velocities during isometric maximal voluntary contraction in different degrees of diabetic neuropathy classified by a fuzzy expert model. Sixty-seven diabetic patients of both sexes were classified by a fuzzy expert system in four groups according to the neuropathy degree: absent, mild, moderate and severe. Average muscle fiber conduction velocities o...
متن کاملA Fuzzy-GA Approach for Parameter Optimization of A Fuzzy Expert System for Diagnosis of Acute Lymphocytic Leukemia in Children
Hybrid fuzzy expert systems are one of the most practical intelligent paradigm of soft computing techniques with the high potential for managing uncertainty associated to the medical diagnosis. The potential of genetic algorithm (GA) by inspiring from natural evolution as a learning and optimization technique has been vastly concentrated for improving fuzzy expert systems. In this paper, the GA...
متن کامل